70 research outputs found

    Functional Implications of Impaired Control of Submaximal Hip Flexion Following Stroke

    Get PDF
    Introduction: We quantified sub-maximal torque regulation during low to moderate intensity isometric hip flexion contractions in individuals with stroke and the associations with leg function. Methods: 10 participants with chronic stroke and 10 controls performed isometric hip flexion contractions at 5%, 10%, 15%, 20%, and 40% of maximal voluntary contraction (MVC) in paretic, non-paretic, and control legs. Results: Participants with stroke had larger torque fluctuations (coefficient of variation, CV), for both the paretic and non-paretic legs, than controls (Pr2 =0.45) and Berg Balance Score (r2=0.38). At 5% MVC, there were larger torque fluctuations in the contralateral leg during paretic contractions compared with the control leg. Conclusions: Impaired low-force regulation of paretic leg hip flexion can be functionally relevant and related to control versus strength deficits post stroke

    Influence of Visual Feedback On Dynamic Balance Control in Chronic Stroke Survivors

    Get PDF
    Chronic stroke survivors have an increased incidence of falls during walking, suggesting changes in dynamic balance control post-stroke. Despite this increased incidence of falls during walking, balance control is often studied only in standing. The purpose of this study was to quantify deficits in dynamic balance control during walking, and to evaluate the influence of visual feedback on this control in stroke survivors. Ten individuals with chronic stroke, and ten neurologically intact individuals participated in this study. Walking performance was assessed while participants walked on an instrumented split-belt treadmill with different types of visual feedback. Dynamic balance control was quantified using both the extent of center of mass (COM) movement in the frontal plane over a gait cycle (COM sway), and base of support (step width). Stroke survivors walked with larger COM sway and wider step widths compared to controls. Despite these baseline differences, both groups walked with a similar ratio of step width to COM sway (SW/COM). Providing a stationary target with a laser reference of body movement reduced COM sway only in the stroke group, indicating that visual feedback of sway alters dynamic balance control post-stroke. These results demonstrate that stroke survivors attempt to maintain a similar ratio of step width to COM movement, and visual cues can be used to help control COM movement during walking post-stroke

    Push-Pull Control of Motor Output

    Get PDF
    Inhibition usually decreases input–output excitability of neurons. If, however, inhibition is coupled to excitation in a push–pull fashion, where inhibition decreases as excitation increases, neuron excitability can be increased. Although the presence of push–pull organization has been demonstrated in single cells, its functional impact on neural processing depends on its effect on the system level. We studied push–pull in the motor output stage of the feline spinal cord, a system that allows independent control of inhibitory and excitatory components. Push–pull organization was clearly present in ankle extensor motoneurons, producing increased peak-to-peak modulation of synaptic currents. The effect at the system level was equally strong. Independent control of the inhibitory component showed that the stronger the background of inhibition, the greater the peak force production. This illustrates the paradox at the heart of push–pull organization: increased force output can be achieved by increasing background inhibition to provide greater disinhibition

    Effects of Laryngeal Restriction on Pharyngeal Peristalsis and Biomechanics: Clinical Implications

    Get PDF
    To date, rehabilitative exercises aimed at strengthening the pharyngeal muscles have not been developed due to the inability to successfully overload and fatigue these muscles during their contraction, a necessary requirement for strength training. The purpose of this study was to test the hypothesis that applying resistance against anterosuperior movement of the hyolaryngeal complex will overload the pharyngeal muscles and by repetitive swallowing will result in their fatigue manifested by a reduction in pharyngeal peristaltic amplitude. Studies were done in two groups. In group 1 studies 15 healthy subjects (age: 42 ± 14 yr, 11 females) were studied to determine whether imposing resistance to swallowing using a handmade device can affect the swallow-induced hyolaryngeal excursion and related upper esophageal sphincter (UES) opening. In group 2, an additional 15 healthy subjects (age 56 ± 25 yr, 7 females) were studied to determine whether imposing resistance to the anterosuperior excursion of the hyolaryngeal complex induces fatigue manifested as reduction in pharyngeal contractile pressure during repeated swallowing. Analysis of the video recordings showed significant decrease in maximum deglutitive superior laryngeal excursion and UES opening diameter (P \u3c 0.01) due to resistive load. Consecutive swallows against the resistive load showed significant decrease in pharyngeal contractile integral (PhCI) values (P \u3c 0.01). Correlation analysis showed a significant negative correlation between PhCI and successive swallows, suggesting “fatigue” (P \u3c 0.001). In conclusion, repeated swallows against a resistive load induced by restricting the anterosuperior excursion of the larynx safely induces fatigue in pharyngeal peristalsis and thus has the potential to strengthen the pharyngeal contractile function

    Stroke-related Changes in Neuromuscular Fatigue of the Hip Flexors and Functional Implications

    Get PDF
    Objective: The aim of this study was to compare stroke-related changes in hip flexor neuromuscular fatigue of the paretic leg during a sustained isometric submaximal contraction with those of the nonparetic leg and controls and to correlate fatigue with clinical measures of function. Design: Hip torques were measured during a fatiguing hip flexion contraction at 20% of the hip flexion maximal voluntary contraction in the paretic and nonparetic legs of 13 people with chronic stroke and 10 age-matched controls. In addition, the participants with stroke performed a fatiguing contraction of the paretic leg at the absolute torque equivalent to 20% maximal voluntary contraction of the nonparetic leg and were tested for self-selected walking speed (10-m Walk Test) and balance (Berg). Results: When matching the nonparetic target torque, the paretic hip flexors had a shorter time to task failure compared with the nonparetic leg and controls (P \u3c 0.05). The time to failure of the paretic leg was inversely correlated with the reduction of hip flexion maximal voluntary contraction torque. Self-selected walking speed was correlated with declines in torque and steadiness. Berg-Balance scores were inversely correlated with the force fluctuation amplitude. Conclusions: Fatigue and precision of contraction are correlated with walking function and balance after stroke

    The Stroke-related Effects of Hip Flexion Fatigue on Over Ground Walking

    Get PDF
    Individuals post stroke often rely more on hip flexors for limb advancement during walking due to distal weakness but the effects of muscle fatigue in this group is not known. The purpose of this study was to quantify how stroke affects the influence of hip flexor fatigue on over ground walking kinematics and performance and muscle activation. Ten individuals with chronic stroke and 10 without stroke (controls) participated in the study. Maximal walking speed, walking distance, muscle electromyograms (EMG), and lower extremity joint kinematics were compared before and after dynamic, submaximal fatiguing contractions of the hip flexors (30% maximal load) performed until failure of the task. Task duration and decline in hip flexion maximal voluntary contraction (MVC) and power were used to assess fatigue. The stroke and control groups had similar task durations and percent reductions in MVC force following fatiguing contractions. Compared with controls, individuals with stroke had larger percent reductions in maximal walking speed, greater decrements in hip range of motion and peak velocity during swing, greater decrements in ankle velocity and lack of modulation of hip flexor EMG following fatiguing dynamic hip flexion contractions. For a given level of fatigue, the impact on walking function was more profound in individuals with stroke than neurologically intact individuals, and a decreased ability to up regulate hip flexor muscle activity may contribute. These data highlight the importance of monitoring the effect of hip flexor muscle activity during exercise or performance of activities of daily living on walking function post stroke

    Stroke-related Effects on Maximal Dynamic Hip Flexor Fatigability and Functional Implications

    Get PDF
    Introduction: Stroke-related changes in maximal dynamic hip flexor muscle fatigability may be more relevant functionally than isometric hip flexor fatigability. Methods: Ten chronic stroke survivors performed 5 sets of 30 hip flexion maximal dynamic voluntary contractions (MDVC). A maximal isometric voluntary contraction (MIVC) was performed before and after completion of the dynamic contractions. Both the paretic and nonparetic legs were tested. Results: Reduction in hip flexion MDVC torque in the paretic leg (44.7%) was larger than the nonparetic leg (31.7%). The paretic leg had a larger reduction in rectus femoris EMG (28.9%) between the first and last set of MDVCs than the nonparetic leg (7.4%). Reduction in paretic leg MDVC torque was correlated with self-selected walking speed (r2 = 0.43), while reduction in MIVC torque was not (r2 = 0.11). Conclusions: Reductions in maximal dynamic torque of paretic hip flexors may be a better predictor of walking function than reductions in maximal isometric contractions

    Identifying Trippers and Non-Trippers Based on Knee Kinematics During Obstacle-Free Walking

    Get PDF
    Trips are a major cause of falls. Sagittal-plane kinematics affect clearance between the foot and obstacles, however, it is unclear which kinematic measures during obstacle-free walking are associated with avoiding a trip when encountering an obstacle. The purpose of this study was to determine kinematic factors during obstacle-free walking that are related to obstacle avoidance ability. It was expected that successful obstacle avoidance would be associated with greater peak flexion/dorsiflexion and range of motion (ROM), and differences in timing of peak flexion/dorsiflexion during swing of obstacle-free walking for the hip, knee and ankle. Three-dimensional kinematics were recorded as 35 participants (young adults age 18–45 (N = 10), older adults age 65+ without a history of falls (N = 10), older adults age 65+ who had fallen in the last six months (N = 10), and individuals who had experienced a stroke more than six months earlier (N = 5)) walked on a treadmill, under obstacle-free walking conditions with kinematic features calculated for each stride. A separate obstacle avoidance task identified trippers (multiple obstacle contact) and non-trippers. Linear discriminant analysis with sequential feature selection classified trippers and non-trippers based on kinematics during obstacle-free walking. Differences in classification performance and selected features (knee ROM and timing of peak knee flexion during swing) were evaluated between trippers and non-trippers. Non-trippers had greater knee ROM (P = .001). There was no significant difference in classification performance (P = .193). Individuals with reduced knee ROM during obstacle-free walking may have greater difficulty avoiding obstacles

    The Relationship Between Blood Flow and Motor Unit Firing Rates in Response to Fatiguing Exercise Post-stroke

    Get PDF
    We quantified the relationship between the change in post-contraction blood flow with motor unit firing rates and metrics of fatigue during intermittent, sub-maximal fatiguing contractions of the knee extensor muscles after stroke. Ten chronic stroke survivors (>1-year post-stroke) and nine controls participated. Throughout fatiguing contractions, the discharge timings of individual motor units were identified by decomposition of high-density surface EMG signals. After five consecutive contractions, a blood flow measurement through the femoral artery was obtained using an ultrasound machine and probe designed for vascular measurements. There was a greater increase of motor unit firing rates from the beginning of the fatigue protocol to the end of the fatigue protocol for the control group compared to the stroke group (14.97 ± 3.78% vs. 1.99 ± 11.90%, p = 0.023). While blood flow increased with fatigue for both groups (p = 0.003), the magnitude of post-contraction blood flow was significantly greater for the control group compared to the stroke group (p = 0.004). We found that despite the lower magnitude of muscle perfusion through the femoral artery in the stroke group, blood flow has a greater impact on peripheral fatigue for the control group; however, we observed a significant correlation between change in blood flow and motor unit firing rate modulation (r2 = 0.654, p = 0.004) during fatigue in the stroke group and not the control group (r2 = 0.024, p < 0.768). Taken together, this data showed a disruption between motor unit firing rates and post-contraction blood flow in the stroke group, suggesting that there may be a disruption to common inputs to both the reticular system and the corticospinal tract. This study provides novel insights in the relationship between the hyperemic response to exercise and motor unit firing behavior for post-stroke force production and may provide new approaches for recovery by improving both blood flow and muscle activation simultaneously
    • …
    corecore